Since its founding back in 2010, Shine Technologies has raised over $200 million to deliver on the potential of generating cheap, abundant energy from fusion.
Like the dozens of other startups at work in this field, Shine Technologies has yet to crack the code on fusion, an energy source that has been 40 years away from commercialization for 50 years. But unlike those competitors, Shine is already generating real revenue — not by producing electricity but by essentially selling neutrons from the fusion reaction to industrial imaging and materials testing companies.
Governments, venture capitalists, tech billionaires, and other private investors around the world have pumped more than $7.1 billion into fusion companies, according to a July 2024 report by the Fusion Industry Association.
But despite almost a century of research since fusion’s discovery, engineers have been unable to achieve its holy grail: continuously generating more power than was used to create a fusion reaction in the first place. The fusion world uses a metric called the fusion energy gain factor, also known simply as Q, to measure that ratio. If a project was to achieve a Q greater than 1, it would achieve the much-sought-after energy-breakeven point.
But Shine has a different benchmark — at least for right now.
“If you talk to almost every fusion company on Earth, they’ll say, ‘We’re shooting for Q greater than 1.’ But we have a different Q — our Q is economic. It’s generating more dollars out than dollars in. That’s how you scale a company,” Greg Piefer, Shine’s CEO, said.
A different kind of fusion company
The fusion reaction is the primordial alchemical trick that powers our sun, propels spacecraft in science-fiction novels and, if the visionaries and true believers are correct, could meet humanity’s voracious energy needs in the centuries to come.
The reaction occurs in plasma, the fourth state of matter. The sun creates plasma by compressing and heating hydrogen to tens of millions of degrees, and it performs the miracle of fusion by confining that hydrogen, along with its variants, with its mammoth gravity.
Humans hoping to recreate the conditions of the sun on Earth have to rely on exotic magnets, Brobdingnagian laser-beam arrays, or other maximalist techniques.
These complex and expensive fusion machines compress and confine plasma in an attempt to bring two nuclei close enough to overcome their repellant electrostatic forces and fuse together. A successful, sustained fusion reaction would heat up a material surrounding the reactor, allowing it to boil water and drive the same sort of conventional steam turbine you’d find in a coal, gas, or traditional nuclear (fission) power plant.
Most of the fusion startups Canary Media has covered — such as Commonwealth Fusion Systems, TAE Technologies, Avalanche Energy, and Zap Energy — plan to take this steam-turbine approach to producing fusion power. Each company has its own (unproven) method for controlling the plasma and wringing out the heat. Some firms use a tokamak design, a very big, hollow donut-shaped hall in which the plasma circulates, or a twisted variant called a stellarator. Some aspirants confine the plasma with magnetic forces while others use high electrical currents or lasers to tame the atomic-particle soup.
So, which technology and approach is Shine using to solve the fusion riddle?