• About Us
  • Contact Us
  • Today Headline
  • Write for us
Today Headline
No Result
View All Result
  • breaking news today
    • Politics news
    • Sports
    • Science News & Society
  • Entertainment News
    • Movie
    • Gaming
  • Technology News
    • Automotive
    • Software & IT
  • Health News
    • Lifestyle
    • Insurance
  • Finance News
    • Money
  • Enterprise
  • Contact Us
  • breaking news today
    • Politics news
    • Sports
    • Science News & Society
  • Entertainment News
    • Movie
    • Gaming
  • Technology News
    • Automotive
    • Software & IT
  • Health News
    • Lifestyle
    • Insurance
  • Finance News
    • Money
  • Enterprise
  • Contact Us
No Result
View All Result
TodayHeadline
No Result
View All Result

AI used to discover clean energy materials ‘faster and more efficiently’

February 8, 2023
in Technology News
Reading Time: 4 mins read
ai used to discover cl 1 scaled – TodayHeadline


Model performance on predicting local strains Predicting the formation energy of (A) ZrMo2, (B) MgO, and (C) YFe5 along the molecular dynamics traces at 800 K. Credit: Patterns (2023). DOI: 10.1016/j.patter.2022.100663

Researchers at the University of Toronto have developed a method of harnessing artificial intelligence to discover new and more efficient materials for clean energy technology.

A team led by Alex Voznyy, an assistant professor in the department of physical and environmental sciences at U of T Scarborough, used machine learning to significantly speed up the amount of time needed to find new materials with desired properties.

“We are trying to find better alternatives to the materials we currently have,” says Voznyy, whose research looks at developing new materials for lithium-ion batteries, hydrogen storage, CO2 capture and solar cells.

“This could mean developing completely new materials or using materials we already know about but never considered using in clean energy applications.”

Voznyy says a major problem with the materials currently used in clean energy technologies is they are either expensive, inefficient or at the limit of their capabilities. The goal, he says, is to create new and better materials by combining elements of existing ones.

The machine learning model relies on data found in the Materials Project, an open-source database of more than 140,000 known materials developed over the past decade. It contains information about the components of known materials, including crystal structure, molecular composition, density, energy conductivity and stability.

To figure out what combination of existing materials could lead to a better lithium-ion battery, for example, Voznyy says it may require figuring out the stability of the new material and how much energy it can store.

The challenge is that the calculations required to do this work do not scale very well. More complex materials such as an alloy require twice as many atoms to encode, making it four times slower to calculate using conventional methods. Doing these types of calculations currently relies on a quantum chemistry approach that Voznyy refers to as “computing by brute force” because it is slow and uses a lot of computing power.

By contrast, the model developed by Voznyy’s team can do these calculations 1,000 times faster.

“Our philosophy is that we don’t want to spend another 10 years preparing data that will predict the same outcome,” says Voznyy, who runs the Clean Energy Lab at U of T Scarborough.

“We want to be able to predict new materials faster and more efficiently so we can start physically creating these materials sooner and with greater certainty that they will work.”

Previous models were able to reproduce the stabilities of known materials, but they couldn’t predict for materials with unknown crystal structures, which refers to the way atoms, ions and molecules are arranged in a material—an essential factor in determining its physical properties. By training the new model on something called distorted structures, it provides insights into how new materials will perform under strain and allows the model to relax a crystal structure to its more stable configuration.

“Knowing the precise crystal geometry is essential to accurately predicting what the properties of new materials will look like and how they will perform,” says Voznyy. “This method significantly speeds up this process and opens up a lot of possibilities.”

Voznny’s team used Niagara, U of T’s supercomputer located at the SciNet center, to run the calculations for the study, which was published in the journal Patterns.

More information:
Filip Dinic et al, Strain data augmentation enables machine learning of inorganic crystal geometry optimization, Patterns (2023). DOI: 10.1016/j.patter.2022.100663

Provided by
University of Toronto


Citation:
AI used to discover clean energy materials ‘faster and more efficiently’ (2023, February 8)
retrieved 8 February 2023
from https://techxplore.com/news/2023-02-ai-energy-materials-faster-efficiently.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

  • Trending
  • Comments
  • Latest
EnerVenue – TodayHeadline

Kentucky is about to get a huge non-lithium battery gigafactory

1680134104 Bombshell Multibillion Dollar Commission Suit Now A Class Action – TodayHeadline

Bombshell Multibillion-Dollar Commission Suit Now A Class Action

Cutest puppies Featured – TodayHeadline

31 Dog Breeds That Have The CUTEST Puppies Ever

27125551111 f6ab50411b 4k cropped m – TodayHeadline

Translation of “Jumping Genes” Creates Cancer Therapy Targets

Liverpool gun murders: 'Sadly, it's probably going to happen again'

Liverpool gun murders: 'Sadly, it's probably going to happen again'

LIFE OF PI Hiran Abeysekera Richard Parker Fred Davis Scarlet Wilderink Andrew Wilson by Matthew Murphy Evan Zimmerman for MurphyMade 1 – TodayHeadline

A Boy And His Tiger Show Their Stripes – Deadline

1a3732be 81a5 4ee5 9239 b6821a0ee504 – TodayHeadline

YMTC set for chip comeback despite US export controls

Lamborghini Revuelto riveting or revolting The choice is yours with – TodayHeadline

Lamborghini Revuelto, riveting or revolting? The choice is yours with its online configurator

PopularStories

Liverpool gun murders: 'Sadly, it's probably going to happen again'
Politics news

Liverpool gun murders: 'Sadly, it's probably going to happen again'

LIFE OF PI Hiran Abeysekera Richard Parker Fred Davis Scarlet Wilderink Andrew Wilson by Matthew Murphy Evan Zimmerman for MurphyMade 1 – TodayHeadline
breaking news today

A Boy And His Tiger Show Their Stripes – Deadline

1a3732be 81a5 4ee5 9239 b6821a0ee504 – TodayHeadline
Technology News

YMTC set for chip comeback despite US export controls

Lamborghini Revuelto riveting or revolting The choice is yours with – TodayHeadline
Automotive

Lamborghini Revuelto, riveting or revolting? The choice is yours with its online configurator

About Us

Todayheadline the independent news and topics discovery
A home-grown and independent news and topic aggregation . displays breaking news linking to news websites all around the world.

Follow Us

Latest News

Liverpool gun murders: 'Sadly, it's probably going to happen again'

Liverpool gun murders: 'Sadly, it's probably going to happen again'

LIFE OF PI Hiran Abeysekera Richard Parker Fred Davis Scarlet Wilderink Andrew Wilson by Matthew Murphy Evan Zimmerman for MurphyMade 1 – TodayHeadline

A Boy And His Tiger Show Their Stripes – Deadline

1a3732be 81a5 4ee5 9239 b6821a0ee504 – TodayHeadline

YMTC set for chip comeback despite US export controls

Liverpool gun murders: 'Sadly, it's probably going to happen again'

Liverpool gun murders: 'Sadly, it's probably going to happen again'

LIFE OF PI Hiran Abeysekera Richard Parker Fred Davis Scarlet Wilderink Andrew Wilson by Matthew Murphy Evan Zimmerman for MurphyMade 1 – TodayHeadline

A Boy And His Tiger Show Their Stripes – Deadline

1a3732be 81a5 4ee5 9239 b6821a0ee504 – TodayHeadline

YMTC set for chip comeback despite US export controls

  • Real Estate
  • Parenting
  • Cooking
  • NFL Games On TV Today
  • Travel and Tourism
  • Home & Garden
  • Pets
  • Privacy & Policy
  • Contact
  • About

© 2023 All rights are reserved Today headline

No Result
View All Result
  • Real Estate
  • Parenting
  • Cooking
  • NFL Games On TV Today
  • Travel and Tourism
  • Home & Garden
  • Pets
  • Privacy & Policy
  • Contact
  • About

© 2023 All rights are reserved Today headline

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.