• About Us
  • Contact Us
  • Cookie policy (EU)
  • Home
  • Privacy Policy
  • Video
  • Write for us
Today Headline
  • HOME
  • NEWS
    • POLITICS
    • News for today
    • Borisov news
  • FINANCE
    • Business
    • Insurance
  • Video
  • TECHNOLOGY
  • ENTERPRISE
  • LIFESTYLE
    • TRAVEL
    • HEALTH
    • ENTERTAINMENT
  • AUTOMOTIVE
  • SPORTS
  • Travel and Tourism
  • HOME
  • NEWS
    • POLITICS
    • News for today
    • Borisov news
  • FINANCE
    • Business
    • Insurance
  • Video
  • TECHNOLOGY
  • ENTERPRISE
  • LIFESTYLE
    • TRAVEL
    • HEALTH
    • ENTERTAINMENT
  • AUTOMOTIVE
  • SPORTS
  • Travel and Tourism
No Result
View All Result
TodayHeadline
No Result
View All Result

CRISPR activation reveals “Rosetta Stone” of immune cell function

February 6, 2022
in Technology
0
CRISPR activation reveals “Rosetta Stone” of immune cell function
0
SHARES
4
VIEWS
Share on FacebookShare on Twitter


CRISPR genome editing has served as a powerful tool for deleting or altering DNA sequences and studying the resulting effect. Now, researchers at Gladstone Institutes and UC San Francisco (UCSF) have co-opted the CRISPR-Cas9 system to forcibly activate genes—rather than edit them—in human immune cells. The method, known as CRISPRa, let them discover genes that play a role in immune cell biology more thoroughly and rapidly than previously possible.

“This is an exciting breakthrough that will accelerate immunotherapy research,” says Alex Marson, MD, PhD, director of the Gladstone-UCSF Institute of Genomic Immunology and senior author of the new study. “These CRISPRa experiments create a Rosetta Stone for understanding which genes are important for every function of immune cells. In turn, this will give us new insight into how to genetically alter immune cells so they can become treatments for cancer and autoimmune diseases.”

The study, published in the journal Science, is the first to successfully use CRISPRa at a large scale in primary human cells, which are cells isolated directly from a person.

The scientists activated each gene in the genome in different cells, enabling them to test almost 20,000 genes in parallel. This allowed them to quickly learn the rules about which genes provide the most powerful levers to reprogram cell functions in ways that could eventually lead to more powerful immunotherapies.

A New Kind of CRISPR

The CRISPR-Cas9 genome-editing system typically relies on Cas9 proteins, often described as “molecular scissors,” to cut DNA at desired locations along the genome.

In recent years, Marson and his colleagues have used CRISPR’s targeted scissors to selectively remove (or “knock out”) genes from various types of human immune cells, including regulatory T cells and monocytes. Their results have begun to illuminate how immune cells can be engineered to be more effective against infections, inflammation, or cancer. But his team knew they were still missing part of the story.

“Knocking out genes is great for understanding the basics of how immune cells function, but a knock-out-only approach can miss pinpointing some really critical genes,” says Zachary Steinhart, PhD, a postdoctoral scholar in the Marson Lab and co-first author of the new paper.

In particular, knocking out a gene does not tell you what would happen if you instead made the gene more active.

So the researchers turned to CRISPRa, short for CRISPR activation. In CRISPRa, the Cas9 protein is altered so that it can no longer cut DNA. Rather, scientists can attach an activator—a molecular “on” switch—to Cas9, so that when it binds to a gene, it activates it. Alternatively, they can attach a repressor—an “off” switch—to Cas9 to turn genes off, achieving a result similar to a typical knockout approach (called CRISPRi for CRISPR interference).

Mapping T Cell Genes

T cells, a type of white blood cell, are one of the key mediators of immunity in the human body; they not only target invading pathogens, but also direct other immune cells to increase or decrease their responses to intruders or cancer cells. This messaging is achieved through the production of signaling molecules known as cytokines. Different types of T cells produce different repertoires of cytokines, and different cytokines or cytokine cocktails have different effects on the immune response.

Controlling T cell cytokines, Marson says, would offer new opportunities to reshape entire immune responses in a wide range of different disease contexts. But researchers have an incomplete understanding of exactly which genes control which cytokines.

In the new work, Marson, Steinhart, and co-first author Ralf Schmidt, MD, worked with their colleagues to adapt CRISPRa and CRISPRi to work at high efficiency in primary T cells—something never before done.

“This improved efficiency in delivering the CRISPRa or CRISPRi machinery into the cells was critical to enable genome-wide experiments and accelerate discoveries,” says Marson.

Then, the research team used these approaches to activate or inactivate nearly 20,000 genes in human T cells isolated directly from multiple healthy volunteers. They screened the resulting cells for changes to cytokine production and homed in on hundreds of genes that serve as key cytokine regulators, including some never before identified in knock-out screens.

“Our work demonstrates the precision and scalability of this technology in human T cells,” says Schmidt. “And we quickly learned the rules of which genes you could turn on to dial the levels of certain cytokines.”

Better T Cell Therapies

To treat some cancer types, clinicians are increasingly using CAR-T cell therapy, in which T cells are removed from a patient’s body, engineered in a lab to target cancer cells, and then reinfused. Boosting the ability of T cells to fight cancer—by altering their cytokine production, for instance—could make CAR-T cell therapy even more powerful.

“Our new data give us this incredibly rich instruction manual for T cells,” says Marson. “Now we have a basic molecular language we can use to engineer a T cell to have very precise properties.”

Marson’s lab is now studying some of the individual genes identified in their screen, as well as working to further leverage CRISPRa and CRISPRi to discover genes that control other critical traits in human immune cells.

“Working with the Gladstone-UCSF Institute of Genomic Immunology, the Innovative Genomics Institute, and the UCSF Living Therapeutics Initiative, our team now hopes to use our new instruction manual to create synthetic gene programs that can be CRISPR-engineered into the next generation cellular immunotherapies to treat a wide-range of diseases,” says Marson.

COMMENTS: Let us know what you think via Twitter or Facebook

Related

Tags: ActivationCellCRISPRfunctionImmunerevealsRosettaStone
Previous Post

New HIV strain found in the Netherlands: Highly infectious variant makes people ill twice as quick

Next Post

Joe Rogan apologises for racial slurs after compilation of videos spanning 12 years surfaces

Related Posts

AI-designed camera only records objects of interest while being blind to others
Technology

AI-designed camera only records objects of interest while being blind to others

Object class-specific imaging using a...

Read more
A symmetric unicycle with jumping reaction wheels
Technology

A symmetric unicycle with jumping reaction wheels

Credit: Geist et al. Researchers...

Read more
Graphene synapses advance brain-like computers
Technology

Graphene synapses advance brain-like computers

Credit: University of Texas at...

Read more
Can WhatsApp messages be secure and encrypted—but traceable at same time?
Technology

Can WhatsApp messages be secure and encrypted—but traceable at same time?

Cryptographer and computer scientist Mayank...

Read more
A flexible, rod-driven soft robot for biomedical applications
Technology

A flexible, rod-driven soft robot for biomedical applications

Structure of the rod-driven soft...

Read more
Load More
Next Post
Joe Rogan apologises for racial slurs after compilation of videos spanning 12 years surfaces

Joe Rogan apologises for racial slurs after compilation of videos spanning 12 years surfaces

  • Trending
  • Comments
  • Latest
Collapsed Doggy sex position promises clitoral stimulation for extra pleasure

Collapsed Doggy sex position promises clitoral stimulation for extra pleasure

Regina Turner divorce news – Ex-Miss Connecticut USA beauty queen followed by Donald Trump Jr on Instagram

Six times actors really romped in sex scenes that make 365 DNI look tame

Six times actors really romped in sex scenes that make 365 DNI look tame

Who is Casey Greenfield and when did she have a child with Jeffrey Toobin?

Who is Casey Greenfield and when did she have a child with Jeffrey Toobin?

Ukraine grain ship headed for Lebanon as war intensifies in southern region

anticipated games

8 Highly Anticipated Games You Won’t Want To Miss

Here’s What Iran’s Cooperation Agreement with China Means for the Region

Meditation

These 3 Meditation Benefits And Accessories Can Enhance Your Wellness Routine

About Us

Todayheadline the independent news and topics discovery
A home-grown and independent news and topic aggregation . displays breaking news linking to news websites all around the world.

Follow Us

Latest News

Ukraine grain ship headed for Lebanon as war intensifies in southern region

anticipated games

8 Highly Anticipated Games You Won’t Want To Miss

Ukraine grain ship headed for Lebanon as war intensifies in southern region

anticipated games

8 Highly Anticipated Games You Won’t Want To Miss

Here’s What Iran’s Cooperation Agreement with China Means for the Region

  • Real Estate
  • Education
  • Parenting
  • Cooking
  • NFL Games On TV Today
  • Travel and Tourism
  • Home & Garden
  • Pets
  • Privacy & Policy
  • Contact
  • About

© 2021 All rights are reserved Todayheadline

No Result
View All Result
  • Real Estate
  • Education
  • Parenting
  • Cooking
  • NFL Games On TV Today
  • Travel and Tourism
  • Home & Garden
  • Pets
  • Privacy & Policy
  • Contact
  • About

© 2021 All rights are reserved Todayheadline

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In

Add New Playlist