A joint research team from the University of Canberra and Kuwait College of Science and Technology has achieved groundbreaking detection of Parkinson’s disease with near-perfect accuracy, simply by analyzing brain responses to emotional situations like watching video clips or images.
The findings offer an objective way to diagnose the debilitating movement disorder, instead of relying on clinical expertise and patient self-assessments, potentially enhancing treatment options and overall well-being for those affected by Parkinson’s disease.
The study was published Oct. 17 in Intelligent Computing in an article titled “Exploring Electroencephalography-Based Affective Analysis and Detection of Parkinson’s Disease.”
Their emotional brain analysis focuses on the difference in implicit emotional reactions between Parkinson’s patients, who are generally believed to suffer from impairments in recognizing emotions, and healthy individuals.
The team demonstrated they can identify patients and healthy individuals with an F1 score of 0.97 or higher, based solely on brain scan readings of emotional responses. This diagnostic performance edges very close to 100% accuracy from brainwave data alone. The F1 score is a metric that combines precision and recall, where 1 is the best possible value.
The results show that Parkinson’s patients displayed specific emotional perception patterns, comprehending emotional arousal better than emotional valence, which means they are more attuned to the intensity of emotions rather than the pleasantness or unpleasantness of those emotions.
The patients were also found to struggle most with recognizing fear, disgust and surprise, or to confuse emotions of opposite valences, such as mistaking sadness for happiness.
The researchers recorded electroencephalography—or EEG—data, measuring electrical brain activity in 20 Parkinson’s patients and 20 healthy controls. Participants watched video clips and images designed to trigger emotional responses.
After the recording of EEG data, multiple EEG descriptors were processed to extract key features and these were transformed into visual representations, which were then analyzed using machine learning frameworks such as convolutional neural networks, for automatic detection of distinct patterns in how the patients processed emotions compared to the healthy group. This processing enabled the highly accurate differentiation between patients and healthy controls.
Key EEG descriptors used include spectral power vectors and common spatial patterns. Spectral power vectors capture the power distribution across various frequency bands, which are known to correlate with emotional states.
Common spatial patterns enhance interclass discriminability by maximizing variance for one class while minimizing it for another, allowing for better classification of EEG signals.
As the researchers continue refining EEG-based techniques, emotional brain monitoring has the potential to become a widespread clinical tool for Parkinson’s diagnosis. The study demonstrates the promise of combining neurotechnology, AI and affective computing to provide objective neurological health assessments.
More information:
Ravikiran Parameshwara et al, Exploring Electroencephalography-Based Affective Analysis and Detection of Parkinson’s Disease, Intelligent Computing (2024). DOI: 10.34133/icomputing.0084
Citation:
Emotional cognition analysis enables near-perfect Parkinson’s detection (2024, December 16)
retrieved 16 December 2024
from https://medicalxpress.com/news/2024-12-emotional-cognition-analysis-enables-parkinson.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.
A joint research team from the University of Canberra and Kuwait College of Science and Technology has achieved groundbreaking detection of Parkinson’s disease with near-perfect accuracy, simply by analyzing brain responses to emotional situations like watching video clips or images.
The findings offer an objective way to diagnose the debilitating movement disorder, instead of relying on clinical expertise and patient self-assessments, potentially enhancing treatment options and overall well-being for those affected by Parkinson’s disease.
The study was published Oct. 17 in Intelligent Computing in an article titled “Exploring Electroencephalography-Based Affective Analysis and Detection of Parkinson’s Disease.”
Their emotional brain analysis focuses on the difference in implicit emotional reactions between Parkinson’s patients, who are generally believed to suffer from impairments in recognizing emotions, and healthy individuals.
The team demonstrated they can identify patients and healthy individuals with an F1 score of 0.97 or higher, based solely on brain scan readings of emotional responses. This diagnostic performance edges very close to 100% accuracy from brainwave data alone. The F1 score is a metric that combines precision and recall, where 1 is the best possible value.
The results show that Parkinson’s patients displayed specific emotional perception patterns, comprehending emotional arousal better than emotional valence, which means they are more attuned to the intensity of emotions rather than the pleasantness or unpleasantness of those emotions.
The patients were also found to struggle most with recognizing fear, disgust and surprise, or to confuse emotions of opposite valences, such as mistaking sadness for happiness.
The researchers recorded electroencephalography—or EEG—data, measuring electrical brain activity in 20 Parkinson’s patients and 20 healthy controls. Participants watched video clips and images designed to trigger emotional responses.
After the recording of EEG data, multiple EEG descriptors were processed to extract key features and these were transformed into visual representations, which were then analyzed using machine learning frameworks such as convolutional neural networks, for automatic detection of distinct patterns in how the patients processed emotions compared to the healthy group. This processing enabled the highly accurate differentiation between patients and healthy controls.
Key EEG descriptors used include spectral power vectors and common spatial patterns. Spectral power vectors capture the power distribution across various frequency bands, which are known to correlate with emotional states.
Common spatial patterns enhance interclass discriminability by maximizing variance for one class while minimizing it for another, allowing for better classification of EEG signals.
As the researchers continue refining EEG-based techniques, emotional brain monitoring has the potential to become a widespread clinical tool for Parkinson’s diagnosis. The study demonstrates the promise of combining neurotechnology, AI and affective computing to provide objective neurological health assessments.
More information:
Ravikiran Parameshwara et al, Exploring Electroencephalography-Based Affective Analysis and Detection of Parkinson’s Disease, Intelligent Computing (2024). DOI: 10.34133/icomputing.0084
Citation:
Emotional cognition analysis enables near-perfect Parkinson’s detection (2024, December 16)
retrieved 16 December 2024
from https://medicalxpress.com/news/2024-12-emotional-cognition-analysis-enables-parkinson.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.