• About Us
  • Contact Us
  • Home
  • Write for us
Today Headline
No Result
View All Result
  • breaking news today
    • Politics news
    • Sports
    • Science News
  • Entertainment News
  • Technology News
    • Automotive
  • Health News
    • Lifestyle
    • Insurance
  • Finance News
    • Money
  • Enterprise
  • Contact Us
  • breaking news today
    • Politics news
    • Sports
    • Science News
  • Entertainment News
  • Technology News
    • Automotive
  • Health News
    • Lifestyle
    • Insurance
  • Finance News
    • Money
  • Enterprise
  • Contact Us
No Result
View All Result
TodayHeadline
No Result
View All Result

The Quest for an Ideal Quantum Bit: New Qubit Breakthrough Could Revolutionize Quantum Computing – SciTechDaily

May 6, 2022
in Tech
0
The Quest for an Ideal Quantum Bit: New Qubit Breakthrough Could Revolutionize Quantum Computing – SciTechDaily
Qubit Platform Single Electron on Solid Neon

A new qubit platform: Electrons from a heated light filament (top) land on solid neon (red block), where a single electron (represented as a wave function in blue) is trapped and manipulated by a superconducting quantum circuit (bottom patterned chip). Credit: Courtesy of Dafei Jin/Argonne National Laboratory

A new qubit platform could transform quantum information science and technology.

You are no doubt viewing this article on a digital device whose basic unit of information is the bit, either 0 or 1. Scientists around the world are racing to develop a new type of computer based on the use of quantum bits, or qubits.

In a paper published on May 4, 2022, in the journal Nature, a team led by the U.S. Department of Energy’s (DOE) Argonne National Laboratory has announced the creation of a new qubit platform formed by freezing neon gas into a solid at very low temperatures, spraying electrons from a light bulb’s filament onto the solid, and trapping a single electron there. This system has the potential to be developed into perfect building blocks for future quantum computers.

“It would appear an ideal qubit may be on the horizon. Thanks to the relative simplicity of the electron-on-neon platform, it should lend itself to easy manufacture at low cost.” — Dafei Jin, Argonne scientist in Center for Nanoscale Materials

To realize a useful quantum computer, the quality requirements for the qubits are extremely demanding. While there are various forms of qubits today, none of them is optimal.

What would make an ideal qubit? It has at least three sterling qualities, according to Dafei Jin, an Argonne scientist and the principal investigator of the project.

It can remain in a simultaneous 0 and 1 state (remember the cat!) over a long time. Scientists call this long “coherence.” Ideally, that time would be around a second, a time step that we can perceive on a home clock in our daily life.

Second, the qubit can be changed from one state to another in a short time. Ideally, that time would be around a billionth of a second (nanosecond), a time step of a classical computer clock.

Third, the qubit can be easily linked with many other qubits so they can work in parallel with each other. Scientists refer to this linking as entanglement.

Although at present the well-known qubits are not ideal, companies like IBM, Intel, Google, Honeywell, and many startups have picked their favorite. They are aggressively pursuing technological improvement and commercialization.

“Our ambitious goal is not to compete with those companies, but to discover and construct a fundamentally new qubit system that could lead to an ideal platform,” said Jin.

While there are many choices of qubit types, the team chose the simplest one — a single electron. Heating up a simple light filament you might find in a child’s toy can easily shoot out a boundless supply of electrons.

One of the challenges for any qubit, including the electron, is that it is very sensitive to disturbance from its surroundings. Thus, the team chose to trap an electron on an ultrapure solid neon surface in a vacuum.

Neon is one of a handful of inert elements that do not react with other elements. “Because of this inertness, solid neon can serve as the cleanest possible solid in a vacuum to host and protect any qubits from being disrupted,” said Jin.

A key component in the team’s qubit platform is a chip-scale microwave resonator made out of a superconductor. (The much larger home microwave oven is also a microwave resonator.) Superconductors — metals with no electrical resistance — allow electrons and photons to interact together at near to absolute zero with minimal loss of energy or information.

“The microwave resonator crucially provides a way to read out the state of the qubit,” said Kater Murch, physics professor at the Washington University in St. Louis and a senior co-author of the paper. “It concentrates the interaction between the qubit and microwave signal. This allows us to make measurements telling how well the qubit works.”

“With this platform, we achieved, for the first time ever, strong coupling between a single electron in a near-vacuum environment and a single microwave photon in the resonator,” said Xianjing Zhou, a postdoctoral appointee at Argonne and the first author of the paper. “This opens up the possibility to use microwave photons to control each electron qubit and link many of them in a quantum processor,” Zhou added.

“Our qubits are actually as good as ones that people have been developing for 20 years.” — David Schuster, physics professor at the University of Chicago and a senior co-author of the paper

The team tested the platform in a scientific instrument called a dilution refrigerator, which can reach temperatures as low as a mere 10 millidegrees above absolute zero. This instrument is one of many quantum capabilities in Argonne’s Center for Nanoscale Materials, a DOE Office of Science user facility.

The team performed real-time operations to an electron qubit and characterized its quantum properties. These tests demonstrated that the solid neon provides a robust environment for the electron with very low electric noise to disturb it. Most importantly, the qubit attained coherence times in the quantum state competitive with state-of-the-art qubits.

“Our qubits are actually as good as ones that people have been developing for 20 years,” said David Schuster, physics professor at the University of Chicago and a senior co-author of the paper. “This is only our first series of experiments. Our qubit platform is nowhere near optimized. We will continue improving the coherence times. And because the operation speed of this qubit platform is extremely fast, only several nanoseconds, the promise to scale it up to many entangled qubits is significant.”

There is yet one more advantage to this remarkable qubit platform.“Thanks to the relative simplicity of the electron-on-neon platform, it should lend itself to easy manufacture at low cost,” Jin said. “It would appear an ideal qubit may be on the horizon.”

Reference: “Single electrons on solid neon as a solid-state qubit platform” by Xianjing Zhou, Gerwin Koolstra, Xufeng Zhang, Ge Yang, Xu Han, Brennan Dizdar, Xinhao Li, Ralu Divan, Wei Guo, Kater W. Murch, David I. Schuster and Dafei Jin, 4 May 2022, Nature.
DOI: 10.1038/s41586-022-04539-x

The team published their findings in a Nature article titled “Single electrons on solid neon as a solid-state qubit platform.” In addition to Jin and Zhou, Argonne contributors include Xufeng Zhang, Xu Han, Xinhao Li and Ralu Divan. In addition to David Schuster, the University of Chicago contributors also include Brennan Dizdar. In addition to Kater Murch of Washington University in St. Louis, other researchers include Wei Guo of Florida State University, Gerwin Koolstra of Lawrence Berkeley National Laboratory and Ge Yang of Massachusetts Institute of Technology.

Funding for the Argonne research primarily came from the DOE Office of Basic Energy Sciences, Argonne’s Laboratory Directed Research and Development program and the Julian Schwinger Foundation for Physics Research.

Previous Post

NASAs mega moon rocket will get another prelaunch test in June – CNN

Next Post

Dark Energy Camera spies galactic ballet of galaxies in stunning space photo – Space.com

Related Posts

Laser Engraving
Tech

What Should I Do If the Laser Engraving Is Incomplete?

Often, when you are working...

Read more
image consultant
Tech

Creating an Online Presence for an Up-and-Coming Image Consultant

Getting started as an image...

Read more
Backups
Tech

Why Backups Matter

Photo by Andrew Neel: Backing...

Read more
Fire suppression systems
Tech

What is the fire suppression system cost?

Fire suppression systems are important...

Read more
Pivoting
Tech

Pivoting to Access Networks in Penetration Testing

Penetration testing, more commonly known...

Read more
Load More
Next Post
Dark Energy Camera spies galactic ballet of galaxies in stunning space photo – Space.com

Dark Energy Camera spies galactic ballet of galaxies in stunning space photo - Space.com

  • Trending
  • Comments
  • Latest
poker

Poker Strategies of Celebrity Players: Tips from the Pros

An Ava Max Song Led The Netherlands’ Far Right Party To Implode

An Ava Max Song Led The Netherlands’ Far Right Party To Implode

Espoma | Video: Stone Raised Bed Prep. with Summer Rayne Oakes || Flock Finger Lakes

Espoma | Video: Stone Raised Bed Prep. with Summer Rayne Oakes || Flock Finger Lakes

Keke Palmer Subtly Reveals the Sex of Her Baby

Keke Palmer Subtly Reveals the Sex of Her Baby

Pamela Anderson’s documentary and memoir expose bad-ass enigma

Pamela Anderson’s documentary and memoir expose bad-ass enigma

“He went to war with the fans.” 😤 | Was Pep Guardiola right to criticise Man City fans?

Watch Inhaler cover Miley Cyrus’ ‘Flowers’ in Live Lounge

Watch Inhaler cover Miley Cyrus’ ‘Flowers’ in Live Lounge

Altisource Stock: Hits Multi-Year Low; Finally Interesting (ASPS)

Altisource Stock: Hits Multi-Year Low; Finally Interesting (ASPS)

About Us

Todayheadline the independent news and topics discovery
A home-grown and independent news and topic aggregation . displays breaking news linking to news websites all around the world.

Follow Us

Latest News

Pamela Anderson’s documentary and memoir expose bad-ass enigma

Pamela Anderson’s documentary and memoir expose bad-ass enigma

“He went to war with the fans.” 😤 | Was Pep Guardiola right to criticise Man City fans?

Watch Inhaler cover Miley Cyrus’ ‘Flowers’ in Live Lounge

Watch Inhaler cover Miley Cyrus’ ‘Flowers’ in Live Lounge

Pamela Anderson’s documentary and memoir expose bad-ass enigma

Pamela Anderson’s documentary and memoir expose bad-ass enigma

“He went to war with the fans.” 😤 | Was Pep Guardiola right to criticise Man City fans?

Watch Inhaler cover Miley Cyrus’ ‘Flowers’ in Live Lounge

Watch Inhaler cover Miley Cyrus’ ‘Flowers’ in Live Lounge

  • Real Estate
  • Parenting
  • Cooking
  • NFL Games On TV Today
  • Travel and Tourism
  • Home & Garden
  • Pets
  • Privacy & Policy
  • Contact
  • About

© 2021 All rights are reserved Todayheadline

No Result
View All Result
  • Real Estate
  • Parenting
  • Cooking
  • NFL Games On TV Today
  • Travel and Tourism
  • Home & Garden
  • Pets
  • Privacy & Policy
  • Contact
  • About

© 2021 All rights are reserved Todayheadline

Go to mobile version