• About Us
  • Contact Us
Today Headline
No Result
View All Result
  • breaking news today
    • Politics news
    • Sports
    • Science News & Society
  • Entertainment News
    • Movie
    • Gaming
  • Technology News
    • Automotive
    • Software & IT
  • Health News
    • Lifestyle
    • Insurance
  • Finance News
    • Money
  • Enterprise
  • Contact Us
  • breaking news today
    • Politics news
    • Sports
    • Science News & Society
  • Entertainment News
    • Movie
    • Gaming
  • Technology News
    • Automotive
    • Software & IT
  • Health News
    • Lifestyle
    • Insurance
  • Finance News
    • Money
  • Enterprise
  • Contact Us
No Result
View All Result
TodayHeadline
No Result
View All Result

Tracking animals with deep learning

1 year ago
in Technology News
Reading Time: 4 mins read


Time to get social: tracking animals with deep learning

Credit: Federal Polytechnic School of Lausanne

Researchers at EPFL have made strides in computer-aided animal tracking by expanding their software, DeepLabCut, to offer high-performance tracking of multiple animals in videos.

The ability to capture the behavior of animals is critical for neuroscience, ecology, and many other fields. Cameras are ideal for capturing fine-grained behavior, but developing computer vision techniques to extract the animal’s behavior is challenging even though this seems effortless for our own visual system.

One of the key aspects of quantifying animal behavior is “pose estimation,” which refers to the ability of a computer to identify the pose (position and orientation of different body parts) of an animal. In a lab setting, it’s possible to assist pose estimation by placing markers on the animal’s body like in motion-capture techniques used in movies (think Gollum in the Lord of the Rings). But as one can imagine, getting animals to wear specialized equipment is not the easiest task, and downright impossible and unethical in the wild.

For this reason, Professors Alexander Mathis and Mackenzie Mathis at EPFL have been pioneering “markerless” tracking for animals. Their software relies on deep-learning to “teach” computers to perform pose estimation without the need for physical or virtual markers.

Their teams have been developing DeepLabCut, an open-source, deep-learning “animal pose estimation package” that can perform markerless motion capture of animals. In 2018 they released DeepLabCut, and the software has gained significant traction in life sciences: over 350,00 downloads of the software and nearly 1400 citations. Then, in 2020, the Mathis teams released DeepLabCut-Live!, a real-time low-latency version of DeepLabCut that allows researchers to rapidly give feedback to animals they are studying.







Credit: Federal Polytechnic School of Lausanne

Now, the scientists have expanded DeepLabCut to address another challenge in pose estimation: tracking social animals, even closely interacting ones; e.g., parenting mice or schooling fish. The challenges here are obvious: the individual animals can be so similar looking that they confuse the computer, they can obscure each other, and there can be many “keypoints” that researchers wish to track, making it computationally difficult to process efficiently.

To tackle this challenge, they first created four datasets of varying difficulty for benchmarking multi-animal pose estimation networks. The datasets, collected with colleagues at MIT and Harvard University, consist of three mice in an open field, home-cage parenting in mice, pairs of marmosets housed in a large enclosure, and fourteen fish in a flow tank. With these datasets in hand, the researchers were able to develop novel methods to deal with the difficulties of real-world tracking.

DeepLabCut addresses these challenges by integrating novel network architectures, data-driven assembly (which keypoint belongs to which animal), and tailored pose-tracking methods. Specifically, the researchers created a new multi-task neural network that predicts keypoints, limbs, as well as the animal identity directly from single frames. They also developed an assembly algorithm that is “agnostic” to the body plan, which is very important when working with animals that can vary widely in their body shapes. These methods were validated on body plans from fish to primates.

Additionally, the scientists developed a method for identifying individual animals from video without any “ground truth” identity data. “Imagine the difficulty of reliability labeling which lab mouse is which,” says Mackenzie Mathis. “They look so similar to the human eye that this task is nearly impossible.”

The new algorithm is based on a metric learning with vision transformers, and allows scientists to even re-identify animals and continue tracking them when multiple animals hide from view and re-appear later. The researchers also used an appearance-based approach to analyze the behavior of pairs of marmosets across nine hours of video—almost a million frames. One of the insights from this approach was that marmosets, a highly social species, like to look in similar directions together.

“Hundreds of laboratories around the world are using DeepLabCut, and have used it to analyze everything from facial expressions in mice, to reaching in primates,” says Alexander Mathis. “I’m really looking forward to seeing what the community will do with the expanded toolbox that allows the analysis of social interactions.”


DeepLabCut-Live! Real-time marker-less motion capture for animals


More information:
Jessy Lauer et al, Multi-animal pose estimation, identification and tracking with DeepLabCut, Nature Methods (2022). DOI: 10.1038 / s41592-022-01443-0

Provided by Ecole Polytechnique Federale de Lausanne

Citation:
Time to get social: Tracking animals with deep learning (2022, April 22)
retrieved 24 April 2022
from https://techxplore.com/news/2022-04-social-tracking-animals-deep.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Related Posts

Technology News

Scientists whose work paved way for COVID vaccines win Nobel

Katalin Karikó and Dr. Drew...

Read more

Hallucinating machines | Financial Times

What to know about Laphonza Butler, Newsom’s Senate pick

Live news: Tankan survey shows rising confidence at Japan manufacturers

Newsom’s Senate pick to replace Feinstein could run in 2024

Load More
  • Trending
  • Comments
  • Latest

Where is Pickle Cottage? The Essex Mansion Stacey Soloman bought for £1.2M – and how it got its name

TONY HETHERINGTON: UPS wrongly charged me import duties on an antique clock I bought in Vienna

Germany is failing to protect power groups from cyber attacks, warns Eon boss

Miracle celebrity weight loss jab semaglutide causes ‘increase in suicidal thoughts’, NHS watchdog reveals

Vivek Agnihotri’s The Vaccine War Limps To 6 Cr Nett After 4 Day Weekend

Cheaper, Safer, and More Powerful Batteries – Aluminum Materials Show Promising Performance

Scientists whose work paved way for COVID vaccines win Nobel

Why the Student-Loan Industry Won’t Be Fixed Anytime Soon

Nicki Minaj Ramps Up ‘Pink Friday 2’ Roll Out With Fan ‘Surprise’

Hope for motorists as bank says oil could fall 20pc within months

Hope for motorists as bank says oil could fall 20pc within months

About Us

Todayheadline the independent news and topics discovery
A home-grown and independent news and topic aggregation . displays breaking news linking to news websites all around the world.

Follow Us

Latest News

Cheaper, Safer, and More Powerful Batteries – Aluminum Materials Show Promising Performance

Scientists whose work paved way for COVID vaccines win Nobel

Why the Student-Loan Industry Won’t Be Fixed Anytime Soon

Cheaper, Safer, and More Powerful Batteries – Aluminum Materials Show Promising Performance

Scientists whose work paved way for COVID vaccines win Nobel

Why the Student-Loan Industry Won’t Be Fixed Anytime Soon

  • Real Estate
  • Parenting
  • Cooking
  • NFL Games On TV Today
  • Travel and Tourism
  • Home & Garden
  • Pets
  • Privacy & Policy
  • Contact
  • About

© 2023 All rights are reserved Today headline

No Result
View All Result
  • Real Estate
  • Parenting
  • Cooking
  • NFL Games On TV Today
  • Travel and Tourism
  • Home & Garden
  • Pets
  • Privacy & Policy
  • Contact
  • About

© 2023 All rights are reserved Today headline